Junxian Li, Kyle Pratt, and I recently uploaded our paper A lower bound for the least prime in an arithmetic progression to the arXiv.
Here is a file where the heuristics considered in section 2 of the paper are developed in a slightly simpler situation.
Given a positive integer and a
coprime to
, define
to be the smallest prime equivalent to
modulo
. We are interested in the worst case behavior, that is
Thus
and
. In particular we are interested in lower bounds for
for large
. An elementary observation, due to Pomerance, in Theorem 1 shows roughly that to find lower bounds for
, it is enough to find lower bounds for the Jacobsthal function (the roughly will be explained below). For an integer
, the Jacobsthal function,
, is the largest difference between consecutive integers coprime to
.
In recent work on Long gaps between primes by Ford, Green, Konyagin, Maynard, and Tao, they improve upon lower bounds for where
is the product of the first
primes (they also mention the connection to the least prime problem; indeed it was Kevin Ford who originally introduced us to the problem). The key difference in the current problem is that we seek lower bounds for
where
is the product of the first
primes that are coprime to
. Our main new idea is to modify these sieve weights of Maynard used in the work of Ford, Green, Konyagin, Maynard, and Tao. We outline our approach in section 4 of our paper.
We finish by taking some time here to discuss smooth number estimates, which is perhaps the most important input to our work as well as all previous work on large gaps between primes (Westzynthius, in 1931, was the first to realize this connection). For , let
be the number of integers
whose prime factors are all
. Thus
is the number of powers of
that are at most
and
is the number of integers of the form
. Estimating
is straightforward and for
is fixed, one can obtain an asymptotic for
by counting lattice points in a simplex, as I describe in this previous blog post.
For our current problem, it is crucial that we are allowed to let depend on
. The important fact is that
is much smaller than expected (by sieve theory heuristics). Rankin, in 1938, in his work on gaps between primes (see also: these set of notes) improved upon smooth number estimates to obtain better lower bounds for large gaps between primes. Westzynthius’ strategy, along with Rankin’s estimates, are still the starting points for current methods of constructing large gaps between primes.